The references below are to peer-reviewed publications either related to the technology platforms of Caladrius Biosciences or authored/co-authored by Caladrius Biosciences.

CD34+ Cell Technology

Johnson, GLHenry, TDPovsic, TJ, et al. CD34+ Cell Therapy Significantly Reduces Adverse Cardiac Events, Health Care Expenditures, and Mortality in Patients with Refractory AnginaSTEM CELLS Transl Med20201– 6

Bairey Merz CN. Testing for Coronary Microvascular Dysfunction. JAMA. Published online November 18, 2019. doi:

Sietsema W.K., et al. (2019). “Autologous CD34+ Cell Therapy for Ischemic Tissue Repair.”

Löffler, A. I., & Bourque, J. M. (2016). Coronary Microvascular Dysfunction, Microvascular Angina, and Management. Current cardiology reports18(1), 1. doi:10.1007/s11886-015-0682-9

Lillian Benck, Timothy D. Henry , CD34+ cell therapy for no option refractory disabling angina: Time for FDA approval?. Carrev (2019),

Sietsema W.K., et al. (2018.) “Japan’s Conditional Approval Pathway for Regenerative Medicines.” Regulatory Focus. Regulatory Affairs Professionals Society.;

Henry, T.D., et al. (2018.); Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials, European Heart Journal, , ehx764,

Chen, C., Wei, J., AlBadri, A., Zarrini, P., & Bairey Merz, N. (2016). Circulation Journal81(1), 3-11. doi:

Quyyumi A., et al. (2016.) PreSERVE-AMI: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary Administration of Autologous CD34+ Cells in Patients with Left Ventricular Dysfunction Post STEMI. Circulation Research, 119(10).

Fujita, Y., et al. (2014.) Phase II Clinical Trial of CD34+ Cell Therapy to Explore Endpoint Selection and Timing in Patients with Critical Limb Ischemia. Circulation Journal, 78(2): 490- 501.

Assmus, B.,  et al. (2014.) Long-term Clinical Outcome after Intracoronary Application of Bone Marrow-derived Mononuclear Cells for Acute Myocardial Infarction: Migratory Capacity of Administered Cells Determines Event-free Survival. European Heart Journal, 35(19):1275-83.

Delewi, R., et al. (2014.) Impact of Intracoronary Bone Marrow Cell Therapy on Left Ventricular Function in the Setting of ST-segment Elevation Myocardial Infarction: A Collaborative Meta-analysis. European Heart Journal, 35(15):989-98.

Losordo, D., et al. (2012.) A Randomized, Controlled Pilot Study of Autologous CD34+ Cell Therapy for Critical Limb Ischemia. Circ Cardiovasc Interv, 5 (6): 821-30.

Delewi, R., et al. (2012). Impact of Intracoronary Cell Therapy on Left Ventricular Function in the Setting of Acute Myocardial Infarction: A Meta-analysis of Randomized Controlled Clinical Trials. Heart (British Cardiac Society).

Zimmet, H., et al. (2012.) Short- and Long-term Outcomes of Intracoronary and Endogenously Mobilized Bone Marrow Stem Cells in the Treatment of ST-segment Elevation Myocardial Infarction: A Meta-analysis of Randomized Control Trials. European Journal of Heart Failure, 14(1), 91–105.

Kinoshita, M., et al. (2012.) Long-term Clinical Outcome after Intramuscular Transplantation of Granulocyte Colony Stimulating Factor-mobilized CD34 Positive Cells in Patients with Critical Limb Ischemia.  Atherosclerosis, 224(2): 440-45.

Mackie, A. R., & Losordo, D. W. (2011). CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Texas Heart Institute journal, 38(5), 474–485.

Tongers, J., Losordo, D. W., & Landmesser, U. (2011). Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. European heart journal, 32(10), 1197–1206.

Kawamoto, A., et al. (2009) Intramuscular Transplantation of G-CSF-mobilized CD34(+) Cells in Patients with Critical Limb Ischemia: A Phase I/IIa, Multicenter, Single-blinded, Dose-escalation Clinical Trial. Stem Cells, 27 (11), 2857-64.

Schächinger, V., et al. (2006) Improved Clinical Outcome after Intracoronary Administration of Bone-marrow-derived Progenitor Cells in Acute Myocardial Infarction: Final 1-year Results of the REPAIR-AMI Trial. European Heart Journal, 27(23), 2775–83.


CD34 Related Lung Damage and COVID-19 Induced Lung Damage Publications

Liang, et al. (2020) Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells.  Link to PDF

Leng, et al. (2020) Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging and Disease, 11(2), 216-228.

Lo BC, et al. (2017) Loss of Vascular CD34 Results in Increased Sensitivity to Lung Injury. Am J Respir Cell Mol Biol, 57(6): p. 651-661.

Abd-Allah SH, et al. (2015) Human peripheral blood CD34+ cells attenuate oleic acid-induced acute lung injury in rats. Cytotherapy, 17(4): p. 443-453.

Huang X, et al. (2014) Human CD34+ progenitor cells freshly isolated from umbilical cord blood attenuate inflammatory lung injury following LPS challenge. PLoS One, 9(2): p. e88814.


Related Cardiovascular Publications

Povsic, et al. (2021) Therapeutic Approaches for the No-Option Refractory Angina Patient. American Heart Association, Volume 1, Issue 2. doi: 10.1161/CIRCINTERVENTIONS.120.009002

Ford TJ, et al. JACC Cardiovasc Interv. 2020; doi:10.1016/j.jcin.2019.11.001

Gallone, et al. (2020) Refractory Angina: From Pathophysiology to New Therapeutic Nonpharmacological Technologies. JACC: Cardiovascular Interventions, Volume 13, Issue 1, 13 January 2020, Pages 1-19.

Bairey Merz, C. N, et al. (2020) Treatment of coronary microvascular dysfunction, Cardiovascular Research, Volume 116, Issue 4, 15 , Pages 856–870.

Blau, M. H, et al. (2019) Stem Cells in the Treatment of Disease. N Engl J Med. 380:1748-1760. DOI: 10.1056/NEJMra1716145

Ford, TJ, et al.  (2019) How to Diagnose and Manage Angina Without Obstructive Coronary Artery Disease: Lessons from the British Heart Foundation CorMicA Trial. Interventional Cardiology Review. 14(2):76–82. DOI:

Riley, F. R,  et al. (2019) More Data Than Options for the “No-Option” Refractory Angina Patient in the United States. Circulation. 124:1689–1691.

Bairey Merz, C. N, et al. (2019) Testing for Coronary Microvascular Dysfunction. JAMA. 322(23):2358. doi:10.1001/jama.2019.16625.

Jones, A. D, et al. (2019). The Impact of Cell Therapy on Cardiovascular Outcomes in Patients With Refractory Angina. Circulation, Volume 124, Issue 12, 7 June 2019, Pages 1786-1795

Taqueti VR, et al. J Am Coll Cardiol. 2018; doi:10.1016/j.jacc.2018.09.042

Bairey Merz, C. N., et al. (2017). Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation, 135(11), 1075–1092.

Taqueti VR, et al. Circulation. 2017; doi:10.1161/CIRCULATIONAHA.116.023266

C, Bairey Merz CN, et al. Treatment of angina and microvascular coronary dysfunction. Curr Treat Options Cardiovasc Med. 2010 Aug;12(4):355-64. doi: 10.1007/s11936-010-0083-8. PMID: 20842559; PMCID: PMC3914311. Link to PDF



Preti, R., (2015.) Guest Commentary: Building a Problem or a Solution? Drug Discovery News.

Sietsema W, Wekselman K. (2015.) Agency Meetings with the US Food and Drug Administration. Regulatory Focus. Regulatory Affairs Professionals Society.