The references below are to peer-reviewed publications either related to the technology platforms of Caladrius Biosciences or authored/co-authored by Caladrius Biosciences.

CD34 Cell Technology

Bairey Merz CN. Testing for Coronary Microvascular Dysfunction. JAMA. Published online November 18, 2019. doi:

Sietsema W.K., et al. (2019). “Autologous CD34+ Cell Therapy for Ischemic Tissue Repair.”

Löffler, A. I., & Bourque, J. M. (2016). Coronary Microvascular Dysfunction, Microvascular Angina, and Management. Current cardiology reports18(1), 1. doi:10.1007/s11886-015-0682-9

Lillian Benck, Timothy D. Henry , CD34+ cell therapy for no option refractory disabling angina: Time for FDA approval?. Carrev (2019),

Sietsema W.K., et al. (2018.) “Japan’s Conditional Approval Pathway for Regenerative Medicines.” Regulatory Focus. Regulatory Affairs Professionals Society.;

Henry, T.D., et al. (2018.); Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials, European Heart Journal, , ehx764,

Chen, C., Wei, J., AlBadri, A., Zarrini, P., & Bairey Merz, N. (2016). Circulation Journal81(1), 3-11. doi:

Quyyumi A., et al. (2016.) PreSERVE-AMI: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary Administration of Autologous CD34+ Cells in Patients with Left Ventricular Dysfunction Post STEMI. Circulation Research, 119(10).

Fujita, Y., et al. (2014.) Phase II Clinical Trial of CD34+ Cell Therapy to Explore Endpoint Selection and Timing in Patients with Critical Limb Ischemia. Circulation Journal, 78(2): 490- 501.

Assmus, B.,  et al. (2014.) Long-term Clinical Outcome after Intracoronary Application of Bone Marrow-derived Mononuclear Cells for Acute Myocardial Infarction: Migratory Capacity of Administered Cells Determines Event-free Survival. European Heart Journal, 35(19):1275-83.

Delewi, R., et al. (2014.) Impact of Intracoronary Bone Marrow Cell Therapy on Left Ventricular Function in the Setting of ST-segment Elevation Myocardial Infarction: A Collaborative Meta-analysis. European Heart Journal, 35(15):989-98.

Losordo, D., et al. (2012.) A Randomized, Controlled Pilot Study of Autologous CD34+ Cell Therapy for Critical Limb Ischemia. Circ Cardiovasc Interv, 5 (6): 821-30.

Delewi, R., et al. (2012). Impact of Intracoronary Cell Therapy on Left Ventricular Function in the Setting of Acute Myocardial Infarction: A Meta-analysis of Randomized Controlled Clinical Trials. Heart (British Cardiac Society).

Zimmet, H., et al. (2012.) Short- and Long-term Outcomes of Intracoronary and Endogenously Mobilized Bone Marrow Stem Cells in the Treatment of ST-segment Elevation Myocardial Infarction: A Meta-analysis of Randomized Control Trials. European Journal of Heart Failure, 14(1), 91–105.

Kinoshita, M., et al. (2012.) Long-term Clinical Outcome after Intramuscular Transplantation of Granulocyte Colony Stimulating Factor-mobilized CD34 Positive Cells in Patients with Critical Limb Ischemia.  Atherosclerosis, 224(2): 440-45.

Kawamoto, A., et al. (2009.) Intramuscular Transplantation of G-CSF-mobilized CD34(+) Cells in Patients with Critical Limb Ischemia: A Phase I/IIa, Multicenter, Single-blinded, Dose-escalation Clinical Trial. Stem Cells, 27 (11), 2857-64.

Schächinger, V., et al. (2006.) Improved Clinical Outcome after Intracoronary Administration of Bone-marrow-derived Progenitor Cells in Acute Myocardial Infarction: Final 1-year Results of the REPAIR-AMI Trial. European Heart Journal, 27(23), 2775–83.


T Regulatory Cell Technology

Marek-Trzonkowsa, N., et al. (2016.) Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. Journal of Translational Medicine, 14 (332).

Bluestone, J., et al. (2015.) Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells. Science Translational Medicine, 7 (315).

Marek-Trzonkowsa, N., et al. (2014.) Therapy of Type 1 Diabetes with CD4(+)CD25(high)CD127- Regulatory T Cells Prolongs Survival of Pancreatic Islets – Results of One Year Follow-up. Clin Immunol.153(1):23-30. 

Marek-Trzonkowska, N., et al. (2012.) Administration of CD4+CD25highCD127- Regulatory T Cells Preserves Beta-cell Function in Type 1 Diabetes in Children. Diabetes Care, 35(9): 1817-20.

Brunstein, C.G., et al. (2011.) Infusion of Ex Vivo Expanded T Regulatory Cells in Adults Transplanted with Umbilical Cord Blood: Safety Profile and Detection Kinetics. Blood, 117(3): 1061-70.

Hippen, K.L., et al. (2011.) Massive Ex Vivo Expansion of Human Natural Regulatory T Cells (T(regs)) with Minimal Loss of In Vivo Functional Activity. Sci Transl Med, 3(83): 83-83.

Tang, Q. and J.A. Bluestone, (2008.) The Foxp3+ Regulatory T Cell: A Jack of All Trades, Master of Regulation. Nat Immunol, 9(3): 239-44.

Tang, Q., et al. (2004.) In Vitro-expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes. J Exp Med, 199(11): 1455-65.



Preti, R., (2015.) Guest Commentary: Building a Problem or a Solution? Drug Discovery News.

Sietsema W, Wekselman K. (2015.) Agency Meetings with the US Food and Drug Administration. Regulatory Focus. Regulatory Affairs Professionals Society.